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Abstract

We describe the use of Bayesian analysis methods applied to TOF-SIMS spectra. The
method finds the probability density functions of measured line parameters (number
of lines, and their widths, peak amplitudes, integrated amplitudes, positions) in mass
intervals over the whole spectrum. We discuss the results we can expect from this5

analysis. We discuss the effects the instrument dead time causes in the COSIMA TOF
SIMS. We address this issue in a new way. The derived line parameters can be used to
further calibrate the mass scaling of TOF-SIMS and to feed the results into other anal-
ysis methods such as multivariate analyses of spectra. We intend to use the method in
two ways, first as a comprehensive tool to perform quantitative analysis of spectra, and10

second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS
measurements of the sample, a property unique for COSIMA. Finally, we point out that
the Bayesian method can be thought as a means to solve inverse problems but with
forward calculations only.

1 Introduction15

The COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight sec-
ondary ion mass spectrometer (TOF-SIMS) on board the Horizon 2000 Eu-
ropean Space Agency Rosetta mission en route to encounter the comet
67P/Churyumov–Gerasimenko. The space probe consists of an orbiter and a lander.
After the in-flight hibernation, the space probe and its instruments were successfully20

woken up on 20 January 2014. The first orbital maneuvers for the comet approach took
place in May 2014. The formal mission end date is 31 December 2015. By that date the
comet has passed perihelion with the Rosetta spacecraft clinging near it all the time.

While the orbiter is traveling at slow speed (meters per second) in the vicinity of the
comet (Glassmeier et al., 2007), the COSIMA instrument is collecting dust particles25

that have been expelled by the comet. A representative set of these particles enter into
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COSIMA through an open window which extends to the outer surface of Rosetta. The
particles are collected on a target plate, which consists of three square 1 cm by 1 cm
metal plates and an unexposed 0.3 by 3.0 cm reference area. Once exposed the plate
is stored. At a suitable time the plates are examined one by one with an illuminated
optical microscope, the COSISCOPE which has an optical pixel size resolution of 14µm5

(Kissel et al., 2007). By combing several exposures a super resolution of about 3µm
is possible. Target particles for further analysis are selected, and exposed to an 115In
primary ion beam with an ion energy of +8 KeV, a pulse duration of < 3ns, and a beam
width of 50 µm. During each pulse an unknown number of secondary ions are expelled
from the top layer(s) of the target sample created. These secondary ions then enter the10

electric field lens system and end up on the detector, where the flight times of ions are
measured. For short this process is called a shot. Depending on the polarity, positive
or negative ions are detected. The shots are repeated at 500µs intervals, thus a one
second exposure consists of 2000 shots and during a 3 min exposure about 360 000
shots are fired. The instrument is described in detail by Kissel et al. (2007).15

The outcome of a measurement is a time of flight spectrum, which we are directly
interested in. In this paper we will discuss the quantitative foundation of understand-
ing the spectrum through statistical analyses of individual spectral lines and touch on
some critical issues such as instrument dead time effects, normalization, isotope ratio
calculation of lines. Multivariate techniques connecting complex chemistry and com-20

plete spectra are discussed elsewhere (Silén et al., 2014). Bayesian methods can be
extended to the interpretation of these cases too, but this is beyond our scope here.

2 Time of flight spectrum

We measure the raw time of flight spectrum, the number of secondary ions as a function
of time. This is the coordinate space we are working in.25
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The time of flight of an ion scale with the mass m and charge q is

t = a+b
√

(m/q), (1)

where a and b have values of about 4000 and 1600, respectively in COSIMA. The
values of a and b are initially estimated by the onboard software. The charge q is
usually +1 or −1. The mass of the ion m is in atomic mass units, u. The time of flight5

is digitized by the Time-to-digital converter to bins of 1.953125 ns (Kissel et al., 2007).
One COSIMA time of flight time bin t corresponds at mass m ∼ 1 to 0.0013u and at
m ∼ 900 to about 0.04u.

The resolution of the mass spectrometer ism/δm ∼ 1400 atm = 100. At low masses
all the atomic lines are easily separated. Up to mass off about m ∼ 120u mineral and10

hydrogen rich organic components can be separated (F. Krüger, personal communica-
tion, 1992). The distinction is based on the fact that most minerals due to their internal
structure shows elemental masses. These have values that usually are below the in-
teger value of the mass. Single mineral ions with Z > 80, m> 200 have masses below
integer values, but they are not expected to have a large contribution to the spectrum.15

Hydrogen tends to be common in organic molecules and their breakup products. A neu-
tral hydrogen has a mass surplus of δH = 0.0078u above the integer value of 1. A loss
of an electron produces a hydrogen ion, H+ with an excess of δH+ = 0.0073u. This
implies that organic molecules with ample hydrogen tend to have masses above an in-
teger mass value. It is noteworthy to mention that other elements common in organics20

have the following deviations 12C: 0δH, 14N: 0.39δH, 16O: −0.65δH, so nitrogen en-
hances the positive deviation, while the presence of oxygen reduces it. Two relatively
common elements, phosphorus and sulfur, often associated with organics reduce the
organic shift by 31P : −3.36δH, 32S : −3.56δH.

The full spectrum consists of 217 or 131 072 time bins and reach to aboutm ∼ 6400u.25

The raw data is in the form of counts per TOF time bin. The lowest mass peak is usually
hydrogen ion at 1.0073u. An electron peak at mass me = (1/1839)u is present in neg-
ative spectra. It is broad due to the significantly larger thermal velocities electrons have
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compared to ions and due to the high energy the ion formation and decay processes
after the substrate has been irradiated with the indium beam. In principle ions with the
same mass should fall into one time bin. However the stability of the instrument, the
pulse length of the primary beam, finite beam size and thermal distribution of ions all
contribute to the resolution so that the time of flight arrivals from a single pulse pro-5

duces a peak with a full width at half of the maximum amplitude (FWHM) of about 2.5
TOF time bins, and close to Gaussian in shape.

Dead time effects

The secondary ions have a distribution in arrival times, which can be characterized by
a distribution at time of flight corresponding to the true mass and Gaussian dispersion10

of about 2.5 bins FWHM. In weak lines with low secondary ion yield, most of the firings
will produce no secondary ions for that mass, and only single ions will be recorder
occasionally. For example a line with a total count of ∼ 1000 secondary ions in a 3 min
exposure will behave in this way, with about one secondary ion on average for every
360 indium shots.15

If the ion yield is higher, such that the total counts of a spectral line are of the order
of 10 % of the total number of shots, in our example ∼ 104, then an instrument dead
time effect sets in. After the arrival of a secondary ion, the instrument does not respond
to new secondary ions within the next 10ns, which corresponds to about 5.2 TOF time
bins (Kissel et al., 2007). This becomes important when the number of cases with two20

or more ions arriving to the instrument becomes significant. Note also as the instru-
ment cannot distinguish between background ions and “good” ions. Both will contribute
to the dead time effect. The contribution of the background is expected to be small,
because of the low background levels in COSIMA. It cannot be completely ignored
however. The dead time causes two major distortions to the shape of the spectral line.25

It reduces the total number of counts detected per time of flight bin. Further, a second
bias is produced by the asymmetric nature of the dead time. The spectral line becomes
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skewed by the shifting the peak of the line to smaller flight times than if all ions were
recorded or if the dead time was zero.

The single most important parameter for understanding the dead time effect is the
ratio of counts creating a given line to the number of shots. It gives a measure of how
many occurrences of two or more ions in a single shot occur for that particular line.5

This implies that two spectra with same line counts for a given mass will have different
dead-time effects if they have a different number of shots. On the other hand the shape
of the same line in a sample from short exposures and long exposures will not change
due to dead time effects if the secondary ion yield does not change.

Ideally the time of flight spectrum would show no background, show sharp discrete10

line peaks and have an exact TOF mass calibration. In reality we are limited by mea-
surement statistics, finite resolution, dead time effects, background, multiple nearby
by lines and various other issues. We will next address how to analyze our COSIMA
spectra from a Bayesian perspective.

3 Method (mathematics and statistics)15

We discuss next the statistical nature of the data. The ordinate in the data is the TOF
time bin, which has a linear relation to the time of flight, which scales as the square
root of ion mass. The data itself is count data and thus Poisson distributed.

The parameters we are interested in at a given mass are the number of spectral com-
ponents, the integrated count of each component, the mass corresponding to each line20

and the confidence limits of all these parameters. We approximate the spectral lines
as Gaussian in the time of flight coordinate system. We will later apply other options
such as a combination of a Gaussian and a Lorentzian profile. Standard methods such
as least squares or χ2 fittings are not applicable, however. The reason for this is the
nature of the noise in these spectra.25
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Our data is particle count data and as such positive definite. It follows Poisson statis-
tics. The Poisson probability density function is defined as

p(n,λ) =
λne−λ

n!
, (2)

where for large values of n the factorial is calculated either in a logarithmic form

ln(p(n,λ)) = n lnλ− λ− ln(n!) (3)5

or e.g. by the Batir (2010) equation which is good for n > 1 to within a relative accuracy
of < 10−6 which is sufficient for our calculations.

The Poisson nature of the data implies that the distribution is not symmetric. The
mean has a value different from the median and the mode, the most likely value. As
the distribution is not symmetric, the standard “sigma”, should not be used to calculate10

confidence limits or “error limits”. Note also that strong peaks have the largest noise in
the absolute terms, whereas low peaks have relatively a more significant noise contri-
bution.

The instrumental dead time brings an additional special complication. The observed
data which is affected by the dead time still has a Poisson probability distribution in15

secondary ion counts per time bin. The “correction” of the dead time applied effectively
distorts the statistical properties of the data by increasing the real noise in the corrected
data to a level larger than what is expected from Poisson data, the corrected data been
essentially too noisy. This is potential problem for strong lines. Our approach will avoid
these problems.20

In statistical analyses, one tends to habitually assume Gaussian noise and the prop-
agation of errors through addition of variances. These assumptions are not valid in
our case. Their use could cause negative values in “error” limits, which is mathemati-
cally and physically an impossible situation as they would imply negative counts. Fur-
thermore, the way propagation is used contains the hidden assumption of symmetric25

errors, which is not the case in these data.
569
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We will address the analysis of COSIMA spectra through Bayesian analysis, which
will avoid all the problems mentioned above.

3.1 Bayesian analysis

The Bayesian analysis is a universal means of understanding and interpreting mea-
sured data. In principle we could consider our spectrum as one measured entity with5

several hundred lines and interpret the full spectrum by Bayesian means. This would
require working in a data space of a dimensionality of several thousands squared.
In practice it is more convenient to reduce the analysis into analysis of hundreds of
lines, which can be really a combination of several nearby lines. This we can do as at
low masses there is no overlap between lines of different integer masses and at high10

masses the lines tend to be sparse and still well separated.
Assume that you have an observed peak shape Y0(t), where t represents a time bin.

It is a sum of the true unknown peak shape θ(t) and a noise term n0(t). If we have
prior knowledge of a likely beam shape we may assume this shape. It does not mean
that we fix the beam shape for good, as we can later apply other models and compare15

them objectively. This is one of the benefits of Bayesian analysis. It is however good
to have a reasonable starting model. The simplest model is that there is no signal in
the data and that at an mass interval the y(t) is constant. Using a single Gaussian
added to a constant background will require 3 additional parameters, the amplitude,
the width and the center of line and for each additional Gaussian we need three more20

parameters. In our model we need further to take into account the dead-time effects
which affect several bins at a time. Our model is thus of the form

θ(t) = D(y(t,xn)), (4)

here θ(t) is the calculated model, D(.) is dead time effect, y is the model which is
a function of time, and n is the number of parameters, one for background and three25

additional parameters for each Gaussian.
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We will search for a solution from the values of model parameters θ = θ(i ,xn) that
best describes the observed spectrum Y0(i ), note the time is discrete, we use now i
instead of the t for continuous time. To within a normalization constant we can directly
calculate for each point t the probability p that our observed data Y (i ) is explained
by a given model θ. Multiplying all these individually calculated probabilities we get5

the conditional probability of our data given the model p(Y |θ). Note that this is a point
where we differ e.g. from a χ2 minimization as we do not square deviations but rather
calculate probabilities. We next take into account any prior information we have of the
parameters and their distributions. This probability independent of the data is called the
prior probability density p(θ). It can be considered as the sampling probability space10

of the data in the parameters space of the model. By multiplying these two probability
densities we get the probability distribution of the the values of θ that explain our data.

Mathematically we are interested in knowing what is the best model θ that describes
our data.

p(θ|Y ) ∝ p(θ)p(Y |θ) (5)15

The posteriori density p(θ|Y ) describing the probability density function of the model
parameters is thus proportional to the product of the prior density of the model param-
eters p(θ) and the probability of the sampling distribution, the data based on the model
p(Y |θ). This is a simplified version of the Bayesian inference (Gelman et al., 1995).

The prior densities p(θ) are selected such that the position has a uniform density in20

a mass interval (m−0.5,m+0.5]: the amplitude of the peak is not well determined
in advance, so we have given a prior distribution which is non-informative, i.e. flat
in 10 log(amplitude+1). The prior density for the peak width is somewhat cumber-
some. We know that the value cannot be negative, and not likely to be very wide. The
FWHM of the peak of the COSIMA is expected to be close to about 2.5 or a sigma25

of 1.1 TOF time bins. To take this into account we apply a prior density distribution
∝ (lg(FWHM/2.5))−2 Note that this does not rule our solutions with single wide peaks.

571

http://www.geosci-instrum-method-data-syst-discuss.net
http://www.geosci-instrum-method-data-syst-discuss.net/4/563/2014/gid-4-563-2014-print.pdf
http://www.geosci-instrum-method-data-syst-discuss.net/4/563/2014/gid-4-563-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GID
4, 563–588, 2014

COSIMA: Bayesian
analysis

H. J. Lehto et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It biases also against identifying single high bins as very unrealistic narrow peaks and
against modeling a constant background as an extremely wide Gaussian.

Our result, will provide the probability density distribution of various parameters on
the left of the equation above. By finding the mode of this distribution we get the most
likely value in the model parameter space describing the data. Confidence limits to the5

model parameters can be calculated from the posteriori probability distributions.

3.2 MCMC algorithms

Markov Chain Monte Carlo chains (MCMC) are very useful in determining the poste-
riori probability space. A random walk in the parameter space is created. This chain
converges to the target distribution which multiplied by the priori distributions will give10

the posteriori distribution. In creating the random walk sequence the next draw from
the parameter space depends on the position and the value of the previous sample.

One widely used family of MCMC chains is the Metropolis algorithm. The core in
these algorithms is the decision of whether to accept the next move. Say, that one
has calculated the probability p(θi |Y ), we make a move from θi to θi+1 by selecting15

randomly a point from the jumping distributions, which have to be symmetric. If the new
θi+1 has a higher probability p(θi+1|y), then we accept the move. If the probability is
poorer it will be accepted if the ratio p(θi+1|y)/p(θi |y) > a, where a is a random number
drawn from a uniform distribution [0,1). The selection of points of lower likelihood allows
for an effective sampling of the posteriori distribution. This central part of the decision20

is shared by many Markov chain algorithms that carry different kinds of names.
We use the adaptive Metropolis algorithm (Haario et al., 2001). It has the same

Metropolis jumping criterion as above, but it has different means for selecting an opti-
mized step size and the jumping direction in the d -dimensional parameter space. This
is done by means of the covariance matrix of the model parameters. The matrix is cal-25

culated from the ever refining posterior distribution in the parameter space. The step
size is obtained from the Cholesky decomposition of the variance matrix multiplied by
a normalization factor sd = 2.42/d , where d is the dimension of the free parameters.
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Xk = Xk−1 +
√
sd Chol(Ck)G, (6)

here Xk is the parameter vector at step k, G is a random vector from a Normal distribu-
tion N(0, 1) and Ck is the covariance matrix of the model parameters calculated from
a suitable points, and d is the number of parameters in the model (Tamminen, 1994).

For simulated and real spectra we have used typically 200 iterations in the burn in5

phase and 20 000 in the main iteration phase. The upper limit of iterations is determined
by convergence to the posteriori distribution and the confidence levels needed.

4 Calculations

4.1 Effects of the dead time

We performed simulations to measure the effects of dead time in COSIMA. First, to10

obtain a good handle on the effect of dead time and second to verify that the equations
we use in applying the dead time effect are suitable for our Bayesian simulations.

We assume a dead time of 10 ns with a total blockage between the first ion and the
subsequent ions. After this dead time, a new ion can be measured initiating a new
dead time. From different total secondary ion counts and indium shots we calculate15

the probability of various numbers of shots from this line. We simulate each shot sep-
arately. The number of secondary ions is obtained by drawing a random number from
(0, 1), which is a map of the cumulative probability distribution of the number of Pois-
son shots. So a random number ranging from zero to a certain value represents the
interval of P (n = 0 ions) give the mean yield of shots. The next interval represents the20

range for one secondary ion etc. This gives us a number which can be interpreted as
the probability in the Poisson sample space. Thus the value tells us how many sec-
ondary ions result for each shot. For these ions we draw the analogue of a flight time
from Gaussian distribution with a FWHM of 5 ns (or 2.5 time bins). If two or more shots
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occur, we determine the ions for which the dead time applies. Finally we calculate two
separate line shapes. First a line with no dead time correction applied and a second
one where it has been applied (Fig. 1).

From these simulations we derive some relevant statistical properties of the dead
time effects. We can confirm the equations derived purely on statistical grounds by5

Stephan et al. (1994),

Icor = N ln(1− Iexp/N), (7)

where N is the number of shots in the spectrum and Icor is the original count with no
dead time effects and Iexp is the observed line with dead time effects in place. If we
have a small yield, i.e. if the ratio of the number of secondary ions integrated over to10

shots is less than about 1/4, which corresponds to a peak value of 1/15 of the number
of shots, then the intensity of the peak is reduced by the the dead time by about

δI =
(
− I

2N

)
. (8)

This is the case for most lines observed in COSIMA. For example if a spectrum results
from 360 000 shots, and has an integrated secondary ion count of 24 000, it will loose15

about 800 counts or 3 % due to the dead time effects.
The dead time shifts the peak position by about

∆ = −0.3 · Iexp/N, (9)

where ∆ is in units of TOF time bins. Alternatively this can be expressed as ∆ = −0.12 ·
FWHM · Iexp/N. The shift has a statistical standard deviation of about σ∆ = 1/

√
ND20

within 10 %. For large yields and at large count values ∆ has an important contribution
for the position determination.

Our Bayesian approach is not affected by the two problems described above as our
approach can be considered as an inverse solution by fully forward sub solutions. In
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our simulation it is better that we use a model for the dead time. The magnitude of
the dead time depends on the number of counts in the previous bins as the follows.
A count will be recorded if there are no counts earlier in the same bin or in the previous
10 ns. This is covered by the taking into consideration half of the counts in the bin in
question, and previous 5 full bins and 0.65 of the bin 5 time steps earlier. Effectively,5

this is calculating the conjugate of the probability of no ions in the previous bins, and
thus independent of previous derivations. Using this simple formula we can model the
effect of dead time effects in our simulations

Idead = I ·
(

1−exp

(
−

0.5I0 +
∑−1
i=−5Ii +0.65I−6

N

))
. (10)

4.2 One weak line – analytic estimates, special case10

First we make a simple example. We follow the Bayes approach, but because of the
simplicity of the problem we need no simulations. We assume no background counts
and a line with a total integrated number of counts as A and with internal Poisson noise
only. Here we calculate the posteriori distribution, directly from a family of Poisson distri-
butions by evaluating the likelihood of the original measured value. We give in Table 115

the median value of the distribution with confidence limits. In the case of a very low
background, these values are approximately correct for a given peak. This posteriori
distribution is to high degree identical to a full posteriori distribution with position and
beam width parameters marginalized, with a non-informative prior, and with no dead
time effects taken into account.20

The differences in the mode, median and mean are important, but fortunately for
our case they are not of big concern as the differences are at the most 1 count. More
important for us is the asymmetry of the distributions in the case of small peaks.

If background counts are present, e.g. 10 counts in addition to a line of 20 counts,
then the distribution above will be the joint distribution.25
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4.3 Simulated data

We calculated a set of artificial one and two peak cases to validate our method. The
exact shape of the line is not critical. For simplicity we chose a Gaussian. We selected
an array of 20 time bins and drew a random position for the peak randomly from [−5,5].
In the case of two peaks we placed them both within that interval. We drew the ampli-5

tudes randomly from a uniform distribution in lg(N +1) space from N =0 to N =9999.
The position of the peaks were drawn randomly from a uniform distribution between
[−10, 10]. The FWHM was fixed to 2.5 time bins.

Before our full Bayesian tests we performed a brute force calculation. The best fit
parameters were calculated at 0.1 bins in time and 20 intervals per dex in log space10

(resolution of a factor 101/20 or 1.122). In total we calculated the likelihood in (100×
60)2 = 36 000 000 separate data points per cases. One double peak model takes about
9.7 effective minutes to calculate on a desktop computer (ADM Athlon (tm) IIX(4) 630
Processor 2.79 GHz).

We calculated a total of 3300 cases with a variable background noise and different15

separations. The major systematic source of error is the discretization of the solutions
of the data into the subbins. This is an effect that shows the weakness of the direct grid
calculation of the probabilities.

A faster and more accurate estimate of the line parameters lines is obtained by the
Bayesian method. The additional benefit is that we obtain a distribution of the various20

parameters of the solution. As an example we show an example of a real line from the
COSIMA full spectrum. The example of line shown in Fig. 2 is a relatively weak line
with a total number counts of about 100. The line mass is derived from the in flight
measurements of constants a and b and is caused by 19F+, which originates from the
fuel of the spacecraft.25

The solution for a single Gaussian gave us a mass of 19.0056u is within of 0.0077u
or about 1.1 TOF time bin of F+ 18.9979u. This is slightly more than expected. This
could be explained by systematic errors or small fluctuation in the acceleration voltage.
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A simulated two line case is shwon in Fig. 3. The two simulated Gaussian peaks have
Poisson noise added to each point. The Gaussians in this simulation have a FWHM 2.5
time flight bins or 0.031u at mass 100u. Both test cases have a peak with an amplitude
of 1000 and a second an amplitude of 100 and and total line counts of 5250 and 525.
The general peak finding algorithm detects one peak, but a two peak fit gives a better5

result. The x axes if Fig. 3 show the time of flight bin around mass 100, with 100u equal
to bin number 40 in these plots. In our simulation 1 time bin corresponds to 0.0125u.
The main component has tails extending over 10 time flight bins and the secondary
peak is not obvious from the line shape as a primary maximum. The y axes show the
total count of the line. In Fig. 3a the peaks are centered on mass 100.000 and 100.070,10

respectively. This corresponds to a separation of 6 bins in the peak locations. The total
count is 5774. The figure shows the simulation with total counts given as a function of
bins. The calculated center of lines are 100.001 and 100.076, the amplitudes are 988
and 107. The total counts are 5286 and 508, the sum of which, 5794, is very close to
the original value. In Fig. 3b the peaks are centered on mass 100.000 and 100.050,15

respectively. This corresponds to a separation of 4 bins in the peak locations. The
Bayesian solution shows lines centered on 100.001 and 100.059, the amplitudes are
1024 and 77.4. The total counts are 5521 and 397, the sum of which is 5918, close to
the original value.

4.4 Bayesian case of two lines20

We ran 10 000 two line simulations and modeled them with one and two peaks and
investigated which of the model was correct by our Bayesian analysis. The results
were quite clear cut. Two nearby peaks are not identified correctly in the presence of
Bayesian noise if the following limitations are met: smaller peak has an amplitude of
< 7 (or a total count of about 30), the separation is < 4.5 time bins, or the ratio of the25

counts of the two lines is > 1000. These limits are for general guidance only, and need
to be solved separately in each case. In our present algorithm we have a freely variable
line width. With these conditions we tested a few specific interesting pairs of lines we
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are able to separate 26Mg from 12C2H2. Other nearby pairs such 13C vs. 12CH, 14N vs.
12CH2, 25Mg vs. 12C2H, 24Mg vs. 12C2 are not separated properly at present, agreeing
with the limits from a larger set of simulations. We will investigate this in subsequent
papers by fixing the position, the width or the shape of the individual spectral lines.
Furthermore if the b term is larger then the resolution improves slightly rendering better5

results.

5 Full COSIMA spectrum

The conventional analysis of resolved time of flight mass spectrum starts with the ob-
served spectrum, applies a correction term in order to correct for (i.e. remove) the dead
time effects, and then possibly remove a background and then treat the remainder as10

the real line. Our analysis is nearly reverse in many aspects. We start from selecting
a model from a large set of models of a beam shape, amplitude and background, after
which we apply the effects of the dead time and obtain a model for an observed spec-
trum. Assuming a Poisson distribution for the model we then calculate the likelihood
that this model explains the observations. We then iterate the solution. There are two15

details we should emphasize here. Our calculation is a forward calculation. For this rea-
son we take the dead time effects into account in a reverse order than is conventional,
thus we add the effects of the dead time to our model instead of trying to “remove” the
effects from the observed data points. Note that at no point we manipulate or change
the values of the real observed data. This has profound implications which we address20

next in more detail.

Analysis of real spectra

To analyze real COSIMA spectra we make an assumption of the line shape. We have
chosen as options a Gaussian shape but on occasions a 80 % Gaussian and 20 %
Lorenzian combination is an option that is suitable for modeling lines in positive spectra.25
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If an asymmetry in the peak develops in COSIMA for any reason we will be able to take
this into account. Negative ion spectra are more complicated as an additional signal
before the main peak is created from by the electrons sputtered off the grids inside the
reflectron. We will not discuss negative spectra in this paper in detail.

We first estimate the line amplitude and width from the observed line. To the esti-5

mated line we then apply the analytic dead time correction and obtain a model line
that we can compare to the observed line. Note that here we can use the information
that the probability distribution of the counts follows a Poisson distribution. With the
Bayesian adaptive metropolis algorithm described earlier we can obtain the posteriori
distributions of the parameters of the original line and the observed dead time effected10

line. These will include automatically the proper line positions and amplitudes. The total
counts are obtained by summing discrete counts from the continuous model curves, so
as such the fitted amplitudes of the continuous Gaussian do not represent a real quan-
tity, but just a mathematical aid for measuring the total count from discrete abscissa
values.15

If we are able to give good guesses for the initial starting points for algorithm it tends
to converge better to a good solution. This is not necessary for the method but aids
in reducing the computing time considerably particularly in estimating multiple spectral
lines simultaneously. The analysis of the lines provides a complicated challenge. Some
lines are clear and isolated, often two separate lines occur. If they are sufficiently far20

apart, they can be treated as single isolated lines. Occasionally a section occurs in the
spectrum where several lines appear to be present and mixed in. Sometimes the back-
ground levels are somewhat elevated mimicking multiple merged lines. Our approach
is the following: we create a running 5 pixel boxcar sum of the spectrum of the original
spectrum, find the local maximum by comparing the the adjacent smoothed pixel sums.25

We then accept as good guesses as points where this maximum has a value which is
larger than the background. The background is defined as the smallest of two back-
ground measurements. One background estimate is obtained from the 5 pixel sum 20
pixels earlier and the second background 20 pixels of the other side of the maximum. If
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this difference of the boxcar of the sum and the background sum is over a certain limit
we accept this point as a guess for a component. We have used an ad hoc limit of 5
counts. This is not a critical limit as it is only a first guess for our Bayesian analysis.

The Bayesian approach provides solid confidence limits for the time of flight and total
counts.5

6 Normalization issues, and isotope ratios

A general normalization is often performed by dividing the count of the spectral lines
by a certain constant or line, e.g. Si+ or In+. This is usually preceded by a removal of
a variable background. This is fine for rough line identification, but possesses a problem
when confidence limits are derived for the measured values. In removing and subse-10

quent ignoring the background one obtains better looking spectra, but in this process
one is introducing a poorly behaving error term on top of the noise created by the
“Poisson noise”. Poisson noise is additive but not subtractive. Furthermore, in calcu-
lating the ratios of lines the determination of the confidence limits becomes formally
ill behaved, as the divider, the reference line has in principle a probability distribution15

which includes zero. These are serious issues when any one of the lines is a weak
one. If the lines in question are strong, and in particular the reference line is a strong
one, say at least a thousand counts, then the the distortion may not be serious, if the
background counts are at the same time low, say less than 50.

The proper way to normalize is to build a model where the line ratio is solved for. Take20

a guess of the stronger integrated line count, make a good guess of the background,
and apply an isotope ratio. You have now calculated two integrated line counts. Using
the Poisson distribution calculate what is the likelihood that the observe lines are ex-
plained by the given model. Continue with the Bayesian principles of searching for the
posteriori probability distribution. Finally marginalize (integrate) over background and25

amplitudes to get the likelihood of the isotope distribution.
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7 Line identifications of specific lines

The spectra are provided with an initial estimate of the scaling parameters, a and b.
We have built a simple line identification scheme with the elemental lines and a small
set of simple organic lines. These can be applied to the observed values and further
improvement with a larger set of lines is possible removing systematic trends evident5

in the original spectra as shown in Figs. 2 or 4.
In this study we have considered so far all lines as independent in the sense that

the background level, the line width, position and the maximum amplitude of the peak
have been free parameters. However, if we wish to ask a specific question such as
does certain mass contain lines at predefined exact masses, we can employ different10

variations to the analysis. For example, if we see separately 24Mg and 12C2, we may
want to ask whether mass 25 contains 25Mg+, 24MgH+ and 12C2H+. We can then fix
the interval of the lines in mass and solve for the background level, a single mass offset,
and the amplitudes (and the widths) of the three peaks. This reduces the adjustable
parameter space from 10 to 8 or 5.15

An additional set up can be created between the above multiline kind example and
isotope ratios. Consider e.g. the lines 12C+, 13C+, 12CH+. We can use a model where
the ratio of 13C+/12C+ has a cosmic value, so that is not a free parameter. Two free
parameters are the position and the amplitude of 12C+. One free parameter is the
position and amplitude of 12CH+. The isotope ratio fixes the amplitude of 13CH+, and20

the mass is fixed by mass difference the mass, so unless we consider the width of the
line being an additional free parameter, it will have really no free parameters, and this
whole model will have 5 (or 8) free parameters.

Investigating the full parameter space of all possible models is beyond the scope
of this paper, but we wish to point our the generality of the Bayesian method. These25

kind of analyses are not easy to do with conventional means, and the posteriori prob-
ability distributions are then only guesses. We thus provide posteriori distributions and
confidence limits for the measured parameters.
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8 Conclusions

We have discussed the basic principles of applying a Bayesian approach to the analysis
of COSIMA spectra. We address is accuracy, the fundamental principles and discuss
the possibilities that analysis method has.

The instrumental properties pf COSIMA that simplify our analysis are the long time5

interval between the shots so that the secondary ions formation and flight time of the
ions can be considered usually statistically independent from shot to shot. Second, the
shortness of the pulse and the well calibrated instrument means that not only each
mass line but often the organic and mineral components can be analyzed separately.
Third, the dead time is relatively short and quite nicely matched with the line width, so10

the dead time effects will not leak to neighboring lines. The narrow line shape means
that the the spectra cannot be well modeled by a line shape derived from the spectrum.
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Table 1. Posteriori distributions of a Poisson peak with a given amplitude Aobs, and no back-
ground noise.

Aobs 2 3 5 7 10 15 20 30

Alow 99 0.1 0.6 1.5 2.5 4.3 7.5 11.0 18.5
Alow 90 0.3 1.3 2.6 3.9 6.1 10.0 14.1 22.4
Alow 68 1.7 2.0 3.6 5.2 7.7 12.0 16.4 24.4
Alow 50 1.7 2.6 4.2 5.8 8.6 13.1 17.7 27.0
Amode 2.0 3.0 5.0 7.0 10.0 15.0 20.0 30.0
Amedian 2.5 3.5 5.5 7.5 10.5 15.5 20.5 30.5
〈A〉 3.0 4.0 6.0 8.0 11.0 16.0 21.0 31.0
Ahigh 50 3.8 5.1 7.4 9.6 13.0 18.4 23.8 34.5
Ahigh 68 4.6 5.9 8.3 10.7 14.2 19.9 25.5 36.5
Ahigh 90 5.3 7.7 10.5 13.1 16.9 23.0 29.0 40.6
Ahigh 99 12.0 10.9 14.0 17.1 21.3 28.1 34.6 47.2√
Aobs 1.4 1.7 2.2 2.7 3.2 3.9 4.5 5.5

We should note that although the single highest probability Amode is the same as the
observed value, the median value has a bias of +0.5 and the mean of the distribution
has an even larger positive bias of 1.0. The total width of the 68 % confidence limits
agree within roundoff errors with

√
A the median point is not centered on the limits.

Other low and high confidence limits are shown. Note that as they are asymmetric both
lower and higher limits are shown for the important confidence limits. The distributions
are clearly asymmetric with a positive skew.
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Figure 1. Effects of dead time in COSIMA. The effect is shown on for two artificial Gaussian
lines. The strongest line has a total yield of 50 %. The fainter line has a yield of 5 %. The top
most curve (green stars and dot dash line) shows the original 50 % curve, the second curve (red
crosses, dash line) show how the dead time effect has changed the curve. This is in principle the
observed line. Note how the maximum and correspondingly the total line count has decreased.
Also note how the line center and peak has shifted to the left. This is particularly noteworthy
on the right side of the line. The lower two curves show similar cases for the 5 % line with blue
squares, purple crosses, respectively.
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Figure 2. An example of the posteriori distribution of a weak line at mass 19. The background
around the line is very low, the weak line has an observed maximum of 16 counts. The top
panel shows the posteriori distributions in total count vs. time flight bin. The red curve contains
50 % posteriori confidence limits, green curve 68 %, dark blue 90 % and the light blue 95 %
limits. Note that the most likely value has a rather symmetric distribution with 68 % confidence
width of about 0.34 TOF time bins or 0.002u in mass, and integrated mean count of 113±11
counts. The mass 19.0056u is within 0.0077u or F+ 18.9979u. The line does not agree quite
as well with heavy water HDO+ of mass 19.0162u nor the hydrogenated water ion (hydronium)
H3O+ with a mass of 19.0178u. These are off by which by 0.0106 and 0.0122u respectively
from the calculated line position. The expected hydronium line would have a time of flight bin
of 9929.53, not in agreement with the posteriori distribution of the upper panel. The spectrum
used here is from the flight model CS_2D8_20100509T194035_SP_P.TAB.
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Figure 3. Two examples of the posteriori distributions of the amplitudes and positions. The
two simulated Gaussian peaks have Poisson noise added to each point. The Gaussians have
a FWHM 2.5 time flight bins or 0.031u at mass 100u. Both test cases have a peak with an
amplitude of 1000 and a second an amplitude of 100 with total bin counts of 5250 and 525,
respectively. In the first case the peaks are located are separated by 6 bins and in the second
similation by 6 bins. The red curve contains 50 % posteriori confidence limits, green curve 68 %,
dark blue 90 % and the light blue 95 % limits. Note that the distribution maxima are well defined
and close to the initial values. Note that the distributions have a low density tails which reflect
the fact that there is mild degeneracy in the solution.
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Figure 4. An example of the the mass 53 spectral lines in a RM spectrum
CS_45D_20110309T074148_SP_P.TAB. The model fit here is a two Gaussian model and
a constant background. The observed line is shown with the red stars and the fit with green
circles. The masses derived are 52.967 and 53.055u. The masses suggest a systematic error
of +0.022u in mass and an identification of 53Cr+ at 52.9401u and C4H+

5 at mass 53.0386u.
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